Mathematical modeling of radiolysis of mixtures of hydrogen, nitrogen, oxygen and their compounds in the gas phase

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A mathematical model of radiation-induced transformations in vapor-gas mixtures containing hydrogen, nitrogen, oxygen and their compounds is presented. In accordance with the array of experimental data used in verification, the model adequately describes the directions and rates of processes in the temperature range from 0 to ~250°C, pressure from 1 kPa to 0.2 MPa (in some cases up to ~5 MPa) and absorbed dose rate up to 103–104 Gy/s over an unlimited time interval. The model can be used as a tool for performing fast calculations with wide sets of external parameters and initial conditions: when assessing the consequences of design and beyond design basis accidents at reactor facilities with water coolants, as well as when substantiating hydrogen explosion safety at facilities where there are sources of ionizing radiation.

Full Text

Restricted Access

About the authors

A. B. Sazonov

National Research Center “Kurchatov Institute”

Email: Grachev_VA@nrcki.ru
Russian Federation, Moscow

V. A. Grachev

National Research Center “Kurchatov Institute”

Author for correspondence.
Email: Grachev_VA@nrcki.ru
Russian Federation, Moscow

O. S. Bystrova

National Research Center “Kurchatov Institute”

Email: Grachev_VA@nrcki.ru
Russian Federation, Moscow

A. V. Frolova

National Research Center “Kurchatov Institute”

Email: Grachev_VA@nrcki.ru
Russian Federation, Moscow

References

  1. Кириллов И.А., Харитонова Н.Л., Шарафутдинов Р.Б., Хренников Н.Н. // Ядерная и радиационная безопасность. 2017. № 2 (84). C. 26.
  2. Стыро И.Б., Недвецкайте Т.Н., Филистович В.И. Изотопы йода и радиационная безопасность. СПб.: Гидрометеоиздат, 1992.
  3. Хорошилова К.Д., Сазонов А.Б., Быстрова О.С. и др. // ВАНТ. Сер. Физика ядерных реакторов. 2023. Вып. 2. C. 114.
  4. Kanda Y., Oki Y., Yokoyama S., et al. // Radiat. Phys. Chem. 2005. V. 74. № 5. P. 338.
  5. Zmitko M., Sinkule J., Linek V. / In: Proceedings of a Technical Committee meeting held in Hluboka nad Vltavou, Czech Republic. IAEA, Vienna, 1999. P. 243.
  6. Matzing H. Chemical Kinetics of Flue Gas Cleaning by Electron Beam, Laboratorium fur Aerosolphysik und Filtertechnik, KFK 4494, Karlsruhe: Kernforschungszentrum, 1989.
  7. Schmitt K.L., Murray D.M., Dibble T.S. // Plasma Chem. Plasma P. 2009. V. 29. P. 347.
  8. Morco R.P., Joseph J.M., Hall D.S. et al // Corrosion Engineering, Science and Technology. 2017. V. 52. № S1. P. 141.
  9. Архипов О.П., Верховская А.О., Кабакчи С.А., Ермаков А.Н. // Атомная энергия. 2007. Т. 103. Вып. 5. С. 299.
  10. Sauer Jr. M.C. / In: The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis. Ed. J.H. Baxendale and F. Busi. D. Reidel Publishing Company. 1982. P. 601.
  11. https://kinetics.nist.gov/kinetics/index.jsp (дата обращения 11.11.2024).
  12. Glarborg P., Miller J.A., Ruscic B., Klippenstein S.J. // Prog. Energy Comb. Sci. 2018. V. 67. P. 31.
  13. Atkinson R., Baulch D.L., Cox R.A. et al. // Atmos. Chem. Phys. 2004. V. 4. P. 1461.
  14. Peterson D.B. The radiation chemistry of gaseous ammonia. University of San Diego, NSRDS-NBS 44, 1974.
  15. Westley F. Table of recommended rate constants for chemical reaction occurring in combustion. Chemical kinetic information center National measurements laboratory National bureau of standards Washington, NSRDS-NBS 67, 1980.
  16. Дмитриев М.Т. // Ж. физ. хим. 1966. Т. XL. № 11. С. 2729.
  17. Willis C., Boyd A.W., Young M.J. // Can. J. Chem. 1970. V. 48. P. 1515.
  18. Cole J., Su S., Blakeley R.E., Koonath P., Hecht A.A. // Radiat. Phys. Chem. 2014. V. 106. P. 95.
  19. Дмитриев М.Т. // Ж. прикл. хим. 1963. Т. 36. Вып. 3. С. 512.
  20. Дмитриев М.Т., Пшежецкий С.Я. / В кн.: Действие ионизирующих излучений на неорганические и органические системы. М.: Изд-во АН СССР. 1958. С. 171.
  21. Дмитриев М.Т. // Изотопы в СССР. 1970. № 17. С. 11.
  22. Дмитриев М.Т. // Труды научно-исследовательского института гидрометеорологического приборостроения. Вып. 13. М.: Гидрометеоиздат, 1965. С. 80.
  23. Дмитриев М.Т., Сараджев Л.В., Миниович М.А. // Ж. прикл. хим. 1960. Т. 33. С. 808.
  24. Bryan S.A., Pederson L.R. Thermal and Combined Thermal and Radiolytic Reactions Involving Nitrous Oxide, Hydrogen, Nitrogen, and Ammonia in Contact with Tank 241-SY-101 Simulated Waste. Report PNNL-10748, 1996. 79 p.
  25. Дмитриев М.Т., Каменецкая С.А., Пшежецкий С.Я. // Химия высок. энергий 1967. Т. 1. № 3. С. 205.
  26. Willis C., Boyd A.W., Miller O.A. // Can. J. Chem. 1969. V. 47. P. 3007.
  27. Jones F.T., Sworski T.J. // J. Chem. Soc., Faraday Trans. 1967. V. 63. P. 2411.
  28. Сорокин Ю.А., Пшежецкий С.Я. // Ж. Физ. Хим. 1964. Т. XXXVIII. № 3. С. 798.
  29. Cheek C.H., Linnenbom V.J. // J. Phys. Chem. 1958. V. 62. P. 1475.
  30. Boyd A.W., Willis C., Miller O.A. // Can. J. Chem. 1973. V. 51. P. 4048.
  31. Калиниченко Б.С., Кулажко В.Г., Калашников и др. Исследование процесса радиолиза воды и водяного пара под действием альфа-излучения. Препринт ИАЭ-3548/13. М.: Институт атомной энергии им. И.В. Курчатова. 1982. 16 c.
  32. Anderson A.R., Knight B., Winter J.A. // Trans. Faraday Soc. 1966. V. 62. P. 359.
  33. Dautzenberg D. // Radiat. Phys. Chem. 1989. V. 33. № 1. P. 61.
  34. May R., Stinchcombe D., White H.P. The radiolytic formation of nitric acid in argon/air/water systems. AERE R 8176, Rev. 1. Harwell, United Kingdom, 1992. 25 p.
  35. Kekki T., Zilliacus R. Formation of nitric acid during high gamma dose radiation. Research Report VTT-R-00774-11. Technical Research Center of Finland. 2011. 8 p.
  36. Kanda Y., Oki Y., Yokoyama S. et al. // Radiat. Phys. Chem. 2005. V. 74. № 5. P. 338.
  37. Russell Jones A. // Radiation Research. 1959. V. 10. № 6. P. 655.
  38. Дмитриев М.Т., Каменецкая С.А., Пшежецкий С.Я. // Химия высок. энергий. 1968. Т. 2. № 5. С. 465.
  39. Harteck P., Dondes S. // J. Chem. Phys. 1957. V. 27. № 2. P. 546.
  40. Karasawa H., Ibe E., Uchida S., Etoh Y., Yasuda Y. // Radiat. Phys. Chem. 1991. V. 37. № 2. P. 193.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Composition of the gas mixture during NO irradiation (70 °C, 66.7 kPa, 105 Gy/min): 1 – NO, 2 – NO2, 3 – N2, 4 – N2O, 5 – O2.

Download (338KB)
3. Fig. 2. Composition of the gas mixture during NO2 irradiation (70 °C, 73.3 kPa, 1.2 × 105 Gy/min): 1 – NO2, 2 – N2, 3 – N2O, 4 – O2, 5 – NO.

Download (336KB)
4. Fig. 3. Accumulation of ammonia and destruction of intermediate radiolysis products during irradiation of a nitrogen-hydrogen mixture containing O2: 1 – NH3, 2 – NO (× 10), 3 – NO2, 4 – N2O.

Download (330KB)
5. Fig. 4. Oxygen consumption and formation of oxidation products during irradiation of a nitrogen-hydrogen mixture containing O2: 1 – O2 (× 2), 2 – HNO3 (× 3), 3 – H2O.

Download (320KB)
6. Fig. 5. The main products of radiolysis of dry air (20°C, 101.3 kPa, 1 Gy/s) containing hydrogen (1 kPa): 1 – NO2, 2 – O3, 3 – N2O, 4 – HNO3.

Download (329KB)
7. Fig. 6. The main products of radiolysis of air (20°C, 101.3 kPa, 1 Gy/s) containing hydrogen (1 kPa) and water vapor (2.3 kPa): 1 – NO2, 2 – O3, 3 – N2O, 4 – HNO3.

Download (336KB)

Copyright (c) 2025 Russian Academy of Sciences