Application of machine learning for predicting phase behavior of interpolyelectrolyte complexes in water–salt media
- Autores: Grigoryan I.V.1,2, Antyufrieva L.A.3, Grigoryan A.P.1, Korigodsky A.A.1, Junyang C.1, Shuxiong Y.1, Pigareva V.A.4, Tishchenko A.E.1, Khomutov G.B.1,2, Sybachin A.V.1
-
Afiliações:
- Lomonosov Moscow State University
- Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences
- Skolkovo Institute of Science and Technology
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- Edição: Volume 87, Nº 3 (2025)
- Páginas: 187-201
- Seção: Articles
- ##submission.dateSubmitted##: 11.07.2025
- ##submission.dateAccepted##: 11.07.2025
- ##submission.datePublished##: 14.07.2025
- URL: https://manmiljournal.ru/0023-2912/article/view/687296
- DOI: https://doi.org/10.31857/S0023291225030028
- EDN: https://elibrary.ru/TAYVPY
- ID: 687296
Citar
Resumo
Water-salt solutions of interpolyelectrolyte complexes (IPEC) are a classic example of “smart” systems, the phase equilibrium in which is regulated by many factors associated with both the parameters of the polymer components and the physical and chemical properties of the environment. This paper presents a model created on the basis of machine learning for predicting the region of existence of water-soluble IPECs. An approach is proposed for independently taking into account the physicochemical properties of polyelectrolytes and the properties of the environment. The developed model is universal and can be used to predict the properties of multicomponent systems of various chemical natures.
Palavras-chave
Texto integral

Sobre autores
I. Grigoryan
Lomonosov Moscow State University; Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences
Email: sybatchin@mail.ru
Rússia, 1, Leninskie Gory, Moscow, 199991; Bldg. 7, 11, Mokhovaya St., Moscow, 125009
L. Antyufrieva
Skolkovo Institute of Science and Technology
Email: sybatchin@mail.ru
Rússia, Bldg. 1, 30, Bolshoy Blvd., Moscow, 121205
A. Grigoryan
Lomonosov Moscow State University
Email: sybatchin@mail.ru
Rússia, 1, Leninskie Gory, Moscow, 199991
A. Korigodsky
Lomonosov Moscow State University
Email: sybatchin@mail.ru
Rússia, 1, Leninskie Gory, Moscow, 199991
C. Junyang
Lomonosov Moscow State University
Email: sybatchin@mail.ru
Rússia, 1, Leninskie Gory, Moscow, 199991
Ya. Shuxiong
Lomonosov Moscow State University
Email: sybatchin@mail.ru
Rússia, 1, Leninskie Gory, Moscow, 199991
V. Pigareva
Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
Email: sybatchin@mail.ru
Rússia, 28, Vavilov St., Moscow, 119334
A. Tishchenko
Lomonosov Moscow State University
Email: sybatchin@mail.ru
Rússia, 1, Leninskie Gory, Moscow, 199991
G. Khomutov
Lomonosov Moscow State University; Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences
Email: sybatchin@mail.ru
Rússia, 1, Leninskie Gory, Moscow, 199991; Bldg. 7, 11, Mokhovaya St., Moscow, 125009
A. Sybachin
Lomonosov Moscow State University
Autor responsável pela correspondência
Email: sybatchin@mail.ru
Rússia, 1, Leninskie Gory, Moscow, 199991
Bibliografia
- Izumrudov V.A., Mussabayeva B.K., Kassymova Z.S., Klivenko A.N., Orazzhanova L.K. Interpolyelectrolyte complexes: advances and prospects of application // Russ. Chem. Rev. 2019. V. 88. P. 1046–1062. https://doi.org/10.1070/RCR4877
- Fares H.M., Schlenoff J.B. Equilibrium overcompensation in polyelectrolyte complexes // Macromolecules. 2017. V. 50. № 10. P. 3968–3978. https://doi.org/10.1021/acs.macromol.7b00665
- Fu J., Schlenoff J.B. Driving forces for oppositely charged polyion association in aqueous solutions: enthalpic, entropic, but not electrostatic // J. Am. Chem. Soc. 2016. V. 138. № 3. P. 980–990. https://doi.org/10.1021/jacs.5b11878
- Meka V.S., Sing M.K.G., Pichika M.R., Nali S.R., Kolapalli V.R.M., Kesharwani P. A comprehensive review on polyelectrolyte complexes // Drug Discov. Today. 2017. V. 22. № 11. P. 1697–1706. https://doi.org/10.1016/j.drudis.2017.06.008
- Dautzenberg H. Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: polyelectrolyte complex formation in the presence of NaCl // Macromolecules. 1997. V. 30. № 25. P. 7810–7815. https://doi.org/10.1021/ma970803f
- Kabanov V. A. Fundamentals of polyelectrolyte complexes in solution and the bulk // In: Decher G., Schlenoff J. B. (Eds.) Multilayer thin films: sequential assembly of nanocomposite materials. Weinheim: Wiley-VCH. 2003. P. 47–86. https://doi.org/10.1002/3527600574.ch2
- Prajapati B.G., Sharma J.B., Sharma S., Trivedi N.D., Gaur M., Kapoor D.U. Harnessing polyelectrolyte complexes for precision cancer targeting: a comprehensive review // Med Oncol. 2024. V. 41. № 6. P. 145. https://doi.org/10.1007/s12032-024-02354-0
- Bertin A. Polyelectrolyte complexes of DNA and polycations as gene delivery vectors // In: Müller M. (Ed.) Polyelectrolyte complexes in the dispersed and solid state II. Advances in polymer science. Berlin: Springer. 2013. V. 256. P. 155–188. https://doi.org/10.1007/12_2013_218
- Durmaz E.N., Baig M.I., Willott J.D., de Vos W.M. Polyelectrolyte complex membranes via salinity change induced aqueous phase separation // ACS Appl. Polym. Mater. 2020. V. 2. № 7. P. 2612–2621. https://doi.org/10.1021/acsapm.0c00255
- Chen J., He R., Chen H., Hu B., Tokay B., Zhang Y.-B., He T. Kinetic aspects of salinity stability of layer-by-layer polyelectrolyte nanofiltration membranes: Impact of soaking time, types of ions and crosslinking // J. Membrane Sci. 2024. V. 709. P. 123087. https://doi.org/10.1016/j.memsci.2024.123087
- Bediako J.K., El Ouardi Y., Massima Mouele E.S., Mensah B., Repo E. Polyelectrolyte and polyelectrolyte complex-incorporated adsorbents in water and wastewater remediation – A review of recent advances // Chemosphere. 2023. V. 325. P. 138418. https://doi.org/10.1016/j.chemosphere.2023.138418
- Li J., van Ewijk G., van Dijken D.J., van der Gucht J., de Vos W. Single-step application of polyelectrolyte complex films as oxygen barrier coatings // ACS Appl. Mater. Interfaces. 2021. V. 13. № 18. P. 21844–21853. https://doi.org/10.1021/acsami.1c05031
- Panova I.G., Sybachin A.V., Spiridonov V.V., Kydralieva K., Jorobekova S., Zezin A.B., Yaroslavov A.A. Non-stoichiometric interpolyelectrolyte complexes: Promising candidates for protection of soils // Geoderma. 2017. V. 307. P. 91–97. https://doi.org/10.1016/j.geoderma.2017.08.001
- Chen M., Xu R., Wu Y., Xiong J., Keleş S.Z., Hankins N.P. Application of polyelectrolytes for contaminant removal and recovery during water and wastewater treatment: A critical review // J. Water Proc. Eng. 2024. V. 64. P. 105528. https://doi.org/10.1016/j.jwpe.2024.105528
- Zezin A.B., Mikheikin S.V., Rogacheva V.B., Zansokhova M.F., Sybachin A.V., Yaroslavov A.A. Polymeric stabilizers for protection of soil and ground against wind and water erosion // Adv. Colloid Interface Sci. 2015. V. 226. P. 17–23. https://doi.org/10.1016/j.cis.2015.06.006
- Akintola J., Chen Y., Digby Z.A., Schlenoff J.B. Antifouling coatings from glassy polyelectrolyte complex films // ACS Appl. Mater. Interfaces. 2023. V. 15. № 43. P. 50058–50068. https://doi.org/10.1021/acsami.3c11744
- Grigoriev D.O., Kohler K., Skorb E., Shchukin D.G., Mohwald H. Polyelectrolyte complexes as a ‘‘smart’’ depot for self-healing anticorrosion coatings // Soft Matter. 2009. V. 5. № 7. P. 1426–1432. https://doi.org/10.1039/B815147D
- Pigareva V.A., Senchikhin I.N., Bolshakova A.V., Sybachin A.V. Modification of polydiallyldimethylammonium chloride with sodium polystyrenesulfonate dramatically changes the resistance of polymer-based coatings towards wash-off from both hydrophilic and hydrophobic surfaces // Polymers. 2022. V. 14. № 6. P. 1247–1260. https://doi.org/10.3390/polym14061247
- Mkrtchyan K.V., Pigareva V.A., Zezina E.A., Kuznetsova O.A., Semenova A.A., Yushina Y.K., Tolordava E.R., Grudistova M.A., Sybachin A.V., Klimov D.I., Abramchuk S.S., Yaroslavov A.A., Zezin A.A. Preparation of biocidal nanocomposites in x-ray irradiated interpolyelectrolyte complexes of polyacrylic acid and polyethylenimine with Ag-ions // Polymers. 2022. V. 14. № 20. P. 4417. https://doi.org/10.3390/polym14204417
- Donath E., Sukhorukov G. B., Caruso F., Davis S.A., Möhwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes // Angew. Chem. Int. Ed. 1998. V. 37. № 16. P. 2201–2205. https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16%3C2201::AID-ANIE2201%3E3.0.CO;2-E
- Pergushov D.V., Zezin A.A., Zezin A.B., Müller A.H.E. Advanced functional structures based on interpolyelectrolyte complexes // In: Müller M. (Ed.) Polyelectrolyte complexes in the dispersed and solid state I. Advances in polymer science. Berlin: Springer. 2013. V. 255. P. 129–160. https://doi.org/10.1007/12_2012_182
- Tirrell M. Polyelectrolyte complexes: Fluid or solid? // ACS Cent Sci. 2018. V. 4. № 5. P. 532–533. https://doi.org/10.1021/acscentsci.8b00284
- Kabanov V.A. Polyelectrolyte complexes in solution and in bulk // Russ. Chem. Rev. 2005. V. 74. № 1. P. 3–20. https://doi.org/10.1070/RC2005V074N01ABEH001165
- Mende M., Buchhammer H.M., Schwarz S., Petzold G., Jaeger W. The stability of polyelectrolyte complex systems of poly(diallydimethyl-ammonium chloride) with different polyanions // Macromol. Symp. 2004. V. 211. № 1. P. 121–133. https://doi.org/10.1002/masy.200450709
- Izumrudov V.A., Paraschuk V.V., Sybachin A.V. Controlled phase separations in solutions of polyelectrolyte complexes—Potential for gene delivery // J. Drug Delivery Sci. Technol. 2006. V. 16. № 4. P. 267–274. https://doi.org/10.1016/S1773-2247(06)50049-8
- Izumrudov V.A., Lim S.K. The effect of charge and length of a blocking polycation on phase separation in aqueous salt-containing solutions of nonstoichiometric polyelectrolyte complexes // Polym. Sci. Ser. B. 1998. V. 40. P. 459–465.
- Pergushov D.V., Izumrudov V.A., Zezin A.B., Kabanov V.A. Stability of interpolyelectrolyte complexes in aqueous saline solutions – effect of the degree of polymerization of polyions // Polym. Sci. Ser. B. 1995. V. 37. P. 1739–1746.
- Davydova O.V., Zelikin A.N., Kargov S.I., Izumrudov V.A. Conformation of polyelectrolyte chains in dilute aqueous solutions investigated by conductometry, 1. influence of the degree of polymerization on the conformation of flexible vinylic polyanions and rigid native DNA // Macromol. Chem. Phys. 2001. V. 202. № 8. P. 1361–1367. https://doi.org/10.1002/1521-3935(20010501)202:8%3C1361::AID-MACP1361%3E3.0.CO;2-N
- Zhang Y., Yildirim E., Antila H.S., Valenzuela L.D., Sammalkorpi M., Lutkenhaus J.L. The influence of ionic strength and mixing ratio on the colloidal stability of PDAC/PSS polyelectrolyte complexes // Soft Matter. 2015. V. 11. № 37. P. 7392–7401. https://doi.org/10.1039/c5sm01184a
- Izumrudov V.A., Sybachin A.V. Phase separation in solutions of polyelectrolyte complexes: The decisive effect of a host polyion // Polym. Sci. Ser. A. 2006. V. 48. № 10. P. 1098–10104. https://doi.org/10.1134/S0965545X06100117
- Konyal E., Cengiz H.Y., Müftüler A., Deligöz H. Monitoring the salt stability and solvent swelling behavior of PAH-based polyelectrolyte multilayers by quartz crystal microbalance with dissipation // Polym. Eng. Sci. 2023. V. 63. № 10. P. 3328–3342. https://doi.org/10.1002/pen.26447
- Jha P.K., Desai P.S., Li J., Larson R.G. pH and salt effects on the associative phase separation of oppositely charged polyelectrolytes // Polymers. 2014. V. 6. № 5. P. 1414–1436. https://doi.org/10.3390/polym6051414
- Saikaew R., Meesorn W., Zoppe J.O., Weder C., Dubas S.T. Influence of the salt concentration on the properties of salt-free polyelectrolyte complex membranes // Macromol. Mater. Eng. 2019. V. 304. № 9. P. 1900245. https://doi.org/10.1002/mame.201900245
- Изумрудов B.A., Касаикин B.A, Ермакова Л.Н., Зезин А.Б. Исследование водорастворимых полиэлектролитных комплексов неэквимольного состава // Высокомол. coeд. 1978. Т. A20. №2. С. 400–406.
- Perry S.L., Li Y., Priftis D., Leon L., Tirrell M. The effect of salt on the complex coacervation of vinyl polyelectrolytes // Polymers. 2014. V. 6. № 6. P. 1756–1772. https://doi.org/10.3390/polym6061756
- Stevens M., Plimpton S. The effect of added salt on polyelectrolyte structure // Eur. Phys. J. B. 1998. V. 2. P. 341–345. https://doi.org/10.1007/s100510050257
- Carrillo J.M.Y., Dobrynin A.V. Polyelectrolytes in salt solutions: molecular dynamics simulations // Macromolecules. 2011. V. 44. № 14. P. 5798–5816. https://doi.org/10.1021/ma2007943
- Chituru S.V., Das S., Majumdar S. Impact of specific ion effects and electrostatic interactions on a polyelectrolyte-polyampholyte complex // Discov. Chem. Eng. 2024. V. 4. P. 6. https://doi.org/10.1007/s43938-024-00043-y
- Zelikin A.N., Litmanovich A.A., Paraschuk V.V., Sybatchin A.V., Izumrudov V.A. Conformational changes of aliphatic ionenes in water-salt solutions as a factor controlling stability of their complexes with calf thymus DNA // Macromolecules. 2003. V. 36. № 3. P. 2066–2071. https://doi.org/10.1021/ma021361x
- Pergushov D.V., Izumrudov V.A., Zezin A.B., Kabanov V.A. Effect of low-molecular-mass salts on the behaviour of water-soluble nonstoichiometric polyelectrolyte complexes // Poly. Sci. Ser. B. 1993. V. 35. № 7. P. 844–849.
- Izumrudov V.A., Kharenko O.A., Kharenko A.V., Gulyayeva Zh.G., Kasaikin V.A., Zezin A.B., Kabanov V.A. Behaviour of non-stoichiometric polyelectrolyte complexes in aqueous salt solutions // Polymer Science U.S.S.R. 1980. V. 22. P. 767–776.
- Digby Z.A., Yang M., Lteif S., Schlenoff J.B. Salt resistance as a measure of the strength of polyelectrolyte complexation // Macromolecules. 2022. V. 55. № 3. P. 978–988. https://doi.org/10.1021/acs.macromol.1c02151
- Boiko D.A., Kozlov K.S., Burykina J.V., Ilyushenkova V.V., Ananikov V.P. Fully automated unconstrained analysis of high-resolution mass spectrometry data with machine learning // J. Am. Chem. Soc. 2022. V. 144. № 32. P. 14590–14606. https://doi.org/10.1021/jacs.2c03631
- Shi Y.-F., Yang Z.-X., Ma S., Kang P.-L., Shang C., Hu P., Liu Z.-P. Machine learning for chemistry: basics and applications // Engineering. 2023. V. 27. P. 70–83. https://doi.org/10.1016/j.eng.2023.04.013
- LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. 2015. V. 521. P. 436–444. https://doi.org/10.1038/nature14539
- Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. V. 596. P. 583–589. https://doi.org/10.1038/s41586-021-03819-2
- Dobbelaere M.R., Plehiers P.P., van de Vijver R., Stevens C.V., van Geem K.M. Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats // Engineering. 2021. V. 7. № 9. P. 1201–1211. https://doi.org/10.1016/j.eng.2021.03.019
- Zhou T., Song Z., Sundmacher K. Big Data creates new opportunities for materials research: a review on methods and applications of machine learning for materials design // Engineering. 2019. V. 5. № 6. P. 1017–1026. https://doi.org/10.1016/j.eng.2019.02.011
- Chen W., Iyer A., Bostanabad R. Data centric design: a new approach to design of microstructural material systems // Engineering. 2022. V. 10. P. 89–98. https://doi.org/10.1016/j.eng.2021.05.022
- Delaney J.S. ESOL: Estimating aqueous solubility directly from molecular structure // J. Chem. Inf. Comput. Sci. 2004. V. 44. № 3. P. 1000–1005. https://doi.org/10.1021/ci034243x
- Thebelt A., Wiebe J., Kronqvist J., Tsay C., Misener R. Maximizing information from chemical engineering data sets: Applications to machine learning // Chem. Eng. Sci. 2022. V. 252. P. 117469. https://doi.org/10.1016/j.ces.2022.117469
- Keith J.A., Vassilev-Galindo V., Cheng B., Chmiela S., Gastegger M., Müller K.-R., Tkatchenko A. Combining machine learning and computational chemistry for predictive insights into chemical systems // Chem. Rev. 2021. V. 121. № 16. P. 9816–9872. https://doi.org/10.1021/acs.chemrev.1c00107
- Lengauer T., Sander O., Sierra S., Thielen A., Kaiser R. Bioinformatics prediction of HIV coreceptor usage // Nature Biotechnology. 2007. V. 25. P. 1407–1410. https://doi.org/10.1038/nbt1371
- Senior A.W., Evans R., Jumper J., Kirkpatrick J., Sifre L., Green T., Qin C., Žídek A., Nelson A.W., Bridgland A., et al. Improved protein structure prediction using potentials from deep learning // Nature. 2020. V. 577. P. 706–710. https://doi.org/10.1038/s41586-019-1923-7
- Tkatchenko A. Machine learning for chemical discovery // Nature Communications. 2020. V. 11. P. 4125. https://doi.org/10.1038/s41467-020-17844-8
- Coe J. P. Machine learning configuration interaction // J. Chem. Theory Comput. 2018. V. 14. № 11. P. 5739–5749. https://doi.org/10.1021/acs.jctc.8b00849
- Zaspel P., Huang B., Harbrecht H., von Lilienfeld O.A. Boosting quantum machine learning models with a multilevel combination technique: Pople diagrams revisited // J. Chem. Theory Comput. 2019. V. 15. № 3. P. 1546–1559. https://doi.org/10.48550/arXiv.1808.02799
- Snyder J. C., Rupp M., Hansen K., Blooston L., Müller K.-R., Burke K. Orbital-free bond breaking via machine learning // J. Chem. Phys. 2013. V. 139. P. 224104. https://doi.org/10.1063/1.4834075
- Snyder J.C., Rupp M., Hansen K., Müller K.-R., Burke K. Finding density functionals with machine learning // Phys. Rev. Lett. 2012. V. 108. P. 253002. https://doi.org/10.1103/PhysRevLett.108.253002
- Bogojeski M., Vogt-Maranto L., Tuckerman M. E., Müller K.-R., Burke K. Quantum chemical accuracy from density functional approximations via machine learning // Nat. Commun. 2020. V. 11. P. 5223. https://doi.org/10.1038/s41467-020-19093-1
- de la Torre J. G., Hern J.G., Lopez Martinez M.C. Prediction of solution properties of flexible-chain polymers // Eur. J. Phys. 2008. V. 29. P. 945–956. https://doi.org/10.1088/0143-0807/29/5/008
- Gribova V., Navalikhina A., Lysenko O., Calligaro C., Lebaudy E., Deiber L., Senger B., Lavalle P., Vrana N.E. Prediction of coating thickness for polyelectrolyte multilayers via machine learning // Sci Rep. 2021. V. 11. P. 18702. https://doi.org/10.1038/s41598-021-98170-x
- Dral P. O., von Lilienfeld O. A., Thiel W. Machine learning of parameters for accurate semiempirical quantum chemical calculations // J. Chem. Theory Comput. 2015. V. 11. № 5. P. 2120–2125. https://doi.org/10.1021/acs.jctc.5b00141
- Kuenneth C., Ramprasad R. polyBERT: A chemical language model to enable fully machine-driven ultrafast polymer informatics // Nature Communications. 2023. V. 14. P. 4099. https://doi.org/10.21203/rs.3.rs-2116998/v1
- Pigareva V.A., Bolshakova A.V., Marina V.I., Sybachin A.V. Water-soluble interpolyelectrolyte complex based on poly(diallyldimethylammonium chloride) and sodium polyacrylate as a component for creating stable biocidal coatings // Colloid Journal. 2023. V. 85. P. 433–441. https://doi.org/10.1134/S1061933X23600100
- Dautzenberg H., Karibyants N. Polyelectrolyte complex formation in highly aggregating systems: Effect of salt – response to subsequent addition of NaCl // Macromolecular Chemistry and Physics. 1999. V. 200. P. 118–125. https://doi.org/10.1002/(SICI)1521-3935(19990101)200:1%3C118::AID-MACP118%3E3.0.CO;2-K
- G ulyaeva Z.G., Aldoshina I.V., Zansokhova M.F., Rogacheva V.B., Zezin A.B., Kabanov V.A. Phase separation in water-salt solutions of polyelectrolyte complexes // Polymer Science U.S.S.R. 1990. V. 32. P. 714–722.
- Jukić J., Korade K., Milisav A.-M., Marion I.D., Kovačević D. Ion-specific and solvent effects on PDADMA–PSS complexation and multilayer formation // Colloids and Interfaces. 2021. V. 5. № 3. P. 38. https://doi.org/10.3390/colloids5030038
Arquivos suplementares
