Характеризация и фотокаталитические свойства тетраподов ZnO, синтезированных методом высокотемпературного пиролиза

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Приведены структурно-морфологическая характеризация и результаты исследований люминесцентных и фотокаталитических свойств тетраподов ZnO, синтезированных методом высокотемпературного пиролиза. Показано, что морфология и структурные параметры тетраподов ZnO определяются расположением в зоне синтеза. Все образцы характеризуются псевдотрехмерной морфологией тетраподов. Обнаружена связь между люминесцентными свойствами и фотокаталитической активностью тетраподов. Наибольшие скорости фотодеградации метиленового синего при воздействии УФ-излучения демонстрировали тетраподы ZnO, выращенные в зонах, наиболее близких и дальних от окна для притока воздуха (константы скорости 54 × 10–3 и 50 × 10–3 мин–1 соответственно).

Полный текст

Доступ закрыт

Об авторах

В. В. Краснова

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: amuslimov@mail.ru
Россия, Москва

А. Э. Муслимов

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Автор, ответственный за переписку.
Email: amuslimov@mail.ru
Россия, Москва

А. С. Лавриков

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: amuslimov@mail.ru
Россия, Москва

Л. А. Задорожная

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: amuslimov@mail.ru
Россия, Москва

Ф. Ф. Оруджев

Дагестанский государственный университет

Email: amuslimov@mail.ru
Россия, Махачкала

Р. Р. Гюлахмедов

Дагестанский государственный университет

Email: amuslimov@mail.ru
Россия, Махачкала

В. М. Каневский

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: amuslimov@mail.ru
Россия, Москва

Список литературы

  1. Baaloudj O., Assadi I., Nasrallah N. et al. // J. Water Process Eng. 2021. V. 42. P. 102089. https://doi.org/10.1016/j.jwpe.2021.102089
  2. Rui Z., Wu S., Peng C. et al. // Chem. Eng. J. 2014. V. 243. P. 254. https://doi.org/10.1016/j.cej.2014.01.010
  3. Turkten N., Bekbolet M. // J. Photochem. Photobiol. A. Chem. 2020. P. 112748. https://doi.org/10.1016/j.jphotochem.2020.112748
  4. Sung-Gyu H., Sung-Il J., Goo-Hwan J. // Curr. Appl. Phys. 2023. V. 46. P. 46. https://doi.org/10.1016/j.cap.2022.12.004
  5. Mishra Y.K., Modi G., Cretu V. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 26. P. 14303. https://doi.org/10.1021/acsami.5b02816
  6. Sulciute A., Nishimura K., Gilshtein E. et al. // J. Phys. Chem. C. 2021. V. 125. P. 1472. https://doi.org/10.1021/acs.jpcc.0c08459
  7. Wang J., Xia Y., Dong Y. et al. // Appl. Catal. B. Environ. 2016. V. 192. P. 8. https://doi.org/10.1016/j.apcatb.2016.03.040
  8. Orudzhev F., Muslimov A., Selimov D. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 16338. https://doi.org/10.3390/ijms242216338
  9. Fichtl M.B., Schumann J., Kasatkin I. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 7043. https://doi.org/10.1002/anie.201400575
  10. Kurtz M., Strunk J., Hinrichsen O. et al. // Angew. Chem. Int. Ed. 2005. V. 44. P. 2790. https://doi.org/10.1002/anie.200462374
  11. Muslimov A., Antipov S., Gadzhiev M. et al. // Appl. Sci. 2023. V. 13. P. 12195. https://doi.org/10.3390/app132212195
  12. Manna L., Milliron D., Meisel A. // Nat. Mater. 2003. V. 2. P. 382. https://doi.org/10.1038/nmat902
  13. Ding Y., Wang Z.L., Sun T. et al. // Appl. Phys. Lett. 2007. V. 90. P. 153510. https://doi.org/10.1063/1.2722671
  14. Kumari C., Pandey A., Dixit A. // J. Alloys Compd. 2018. V. 735. P. 2318. https://doi.org/10.1016/j.jallcom.2017.11.377
  15. Li X., Wang Y., Liu W. et al. // Mater. Lett. 2012. V. 85. P. 25. https://doi.org/10.1016/j.matlet.2012.06.107
  16. Zhou T., Hu M., He J. et al. // CrystEngComm. 2019. V. 21. P. 5526. https://doi.org/10.1039/c9ce01073d
  17. Larbah Y., Adnane M., Sahraoui T. // Mater. Sci.-Poland. 2015. V. 33. P. 491. https://doi.org/10.1515/msp-2015-0062
  18. Rakov E.G. // Russ. Chem. Rev. 2007. V. 76. P. 1. https://doi.org/10.1070/RC2007v076n01ABEH003641
  19. Ahn C.H., Kim Y.Y., Kim D.C. et al. // J. Appl. Phys. 2009. V. 105. P. 013502. https://doi.org/10.1063/1.3054175
  20. Cao B., Cai W., Zeng H. // Appl. Phys. Lett. 2006. V. 88. P. 161101. https://doi.org/10.1063/1.2195694
  21. Paulauskas I.E., Jellison G.E., Boatner L.A. et al. // Int. J. Electrochem. 2011. P. 563427. https://doi.org/10.4061/2011/563427

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема (вид сверху в разрезе) зон роста тетраподов ZnO.

Скачать (128KB)
3. Рис. 2. Микроскопические изображения тетраподов ZnO: а – зона 1, б – зона 2, в – зона 3, г – зона 4.

Скачать (469KB)
4. Рис. 3. Дифрактограммы тетраподов ZnO, выращенных в зонах 1–4.

Скачать (118KB)
5. Рис. 4. Спектры ФЛ тетраподов ZnO, выращенных в зонах 1–4 (номера кривых соответствуют номерам зон). На вставке: результат деконволюции зеленой полосы люминесценции тетраподов ZnO (зона 1); сплошная линия 1 – эксперимент, пунктирная 2 – результат подгонки.

Скачать (182KB)
6. Рис. 5. Оптические спектры поглощения растворов красителя МС под действием УФ-излучения (253.7 нм, 180 мкВт/см2) (а) и определение константы скорости реакции (k, мин–1) (б) в присутствии тетраподов ZnO различных типов. C – концентрация МС в момент времени t от начала облучения, С0 – исходная концентрация МС (1 мг/л). Обозначения на (а): 0 – 0 мин, 1 – 10 мин, 2 – 20 мин, 3 – 30 мин, 4 – 60 мин. Обозначения на (б): 1–4 – соответственно зоны 1–4, 5 – фотолиз.

Скачать (139KB)

© Российская академия наук, 2024