Fastest Motion of a System of Interacting Mass Points along a Rough Horizontal Straight Line

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An optimal control problem for a system of material points that move along a horizontal rough line is considered. The system moves due to forces of the interaction between the points and the forces of Coulomb’s dry friction acting between points and the underlying line. Only forward movement is allowed. A control algorithm is proposed which provides the fastest transition of the system from one state of rest to another.

Sobre autores

I. Ananievski

Ishlinsky Institute for Problems in Mechanics RAS

Autor responsável pela correspondência
Email: anan@ipmnet.ru
Russia, Moscow

Bibliografia

  1. Chernous’ko F.L. The optimum rectilinear motion of a two-mass system // JAMM, 2002, vol. 66, no. 1, pp. 1–7.
  2. Chernous’ko F.L. Analysis and optimization of the rectilinear motion of a two-body system // JAMM, 2011, vol. 75, no. 5, pp. 493–500.
  3. Bolotnik N., Pivovarov M., Zeidis I., Zimmermann K. The undulatory motion of a chain of particles in a resistive medium // ZAMM, 2011, vol. 91, no. 4, pp. 259–275.
  4. Bolotnik N., Pivovarov M., Zeidis I., Zimmermann K. The undulatory motion of a chain of particles in a resistive medium in the case of a smooth excitation mode // ZAMM, 2013, vol. 93, no. 12, pp. 895–913.
  5. Wagner G.L., Lauga E. Crawling scallop: friction-based locomotion with one degree of freedom // J. Theor. Biol., 2013, no. 324, pp. 42–51.
  6. Chernous’ko F.L. Translational motion of a chain of bodies in a resistive medium // JAMM, 2017, vol. 81, no. 4, pp. 256–261.
  7. Bolotnik N.N., Gubko P.A., Figurina T.Yu. Possibility of a non-reverse periodic rectilinear motion of a two-body system on a rough plane // Mech. Solids, 2018, vol. 53, pp. 7–15.
  8. Bolotnik N.N., Figurina T.Yu. Reversible motion of a chain of interacting bodies along a straight line along a rough horizontal plane // J. Comput. Syst. Sci. Int., 2023, no. 3. (in Press)
  9. Figurina T.Y. Optimal control of system of material points in a straight line with dry friction // J. Comput. Syst. Sci. Int., 2015, vol. 54, no. 5, pp. 671–677.
  10. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The Mathematical Theory of Optimal Processes. N.Y.: Wiley&Sons Inc., 1962. 360 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (47KB)

Declaração de direitos autorais © И.М. Ананьевский, 2023