Towards Heat Transfer Critical Conditions for Flow of Fluids with a Nonmonotonic Dependence of Viscosity on the Temperature in Annular Channel

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The present work is devoted to mathematical modeling of the features of the flow of fluids with a nonmonotonic dependence of viscosity on temperature, which is inherent in some solutions and melts of polymers, as well as in a number of liquid metal alloys. For a given pressure drop, the critical conditions of heat transfer on the channel walls are found, which determine the fluid flow rate in the process of establishing a flow associated with the formation of a localized high-viscosity region.

Sobre autores

V. Kireev

Ufa University of Science and Technology

Autor responsável pela correspondência
Email: kireev@anrb.ru
Russia, Ufa

A. Mukhutdinova

Mavlutov Institute of Mechanics UFRC RAS

Autor responsável pela correspondência
Email: muhutdinova18@gmail.com
Russia, Ufa

S. Urmancheev

Mavlutov Institute of Mechanics UFRC RAS

Autor responsável pela correspondência
Email: said@anrb.ru
Russia, Ufa

Bibliografia

  1. Frenkel J. Kinetic Theory of Liquids. Oxford: Clarendon, 1946. 488 p.
  2. Vinogradov G.V., Malkin A.Y. Rheology of Polymers. Berlin; Heidelberg: Springer, 1980. 468 p.
  3. Bacon R.F., Fanelli R. The viscosity of sulfur // J. Am. Chem. Soc., 1943, vol. 65, pp. 639–648.
  4. Tabachnikova E.D., Bengus V.Z., Egorov D.V., Tsepelev V.S., Ocelik V. Mechanical properties of amorphous alloys ribbons prepared by rapid quenching of the melt after different thermal treatments before quenching // Mater. Sci. Eng. A, 1997, vol. 226–228, pp. 887–890.
  5. Altunina L.K., Kuvshinov V.A., Kuvshinov I.V., Stasyeva L.A., Chertenkov M.V., Andreev D.V., Karmanov A.Yu. Enhanced oil recovery from permian-carboniferous deposit of high-viscosity oil in the Usinsk oilfield with physicochemical and complex technologies // J. Sib. Fed. Univ. Chem., 2018, vol. 11, no. 3, pp. 462–476.
  6. Fink J.H., Park S.O., Greeley R. Cooling and deformation of cooling sulfur flow // Icarus, 1983, vol. 56, no. 1, pp. 38–50
  7. Urmancheev S.F., Kireev V.N. Steady flow of a fluid with an anomalous temperature dependence of viscosity // Dokl. Phys., 2004, vol. 49, no. 5, pp. 328–331.
  8. Urmancheev S., Kireev V. The transient flow of liquid with non-monotonous temperature dependent viscosity in a plane channel // AIP Conf. Proc., 2017, vol. 1906, no. 1, pp. 200009.
  9. Kireev V.N., Nizamova A.D., Urmancheev S.F. The hydraulic resistance of thermoviscous liquid flow in a plane channel with a variable cross-section // J. Phys. Conf. Ser., 2019, vol. 1158, no. 3, pp. 032014.
  10. Kireev V.N., Nizamova A.D., Urmancheev S.F. Some features of hydrodynamic instability of a plane channel flow of a thermoviscous fluid // Fluid Dyn., 2019, vol. 54, no. 7, pp. 978–982.
  11. Patankar S. Numerical Heat Transfer and Fluid Flow. N.Y.: Hemisphere, 1980. 214 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (425KB)
3.

Baixar (25KB)
4.

Baixar (372KB)
5.

Baixar (76KB)
6.

Baixar (81KB)
7.

Baixar (36KB)

Declaração de direitos autorais © В.Н. Киреев, А.А. Мухутдинова, С.Ф. Урманчеев, 2023