Гидротермальный синтез сульфида серебра

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Гидротермальным методом при температуре от 373 до 453 K в водных и спиртовых растворах нитрата серебра, сульфида и цитрата натрия, серы и тиокарбамида синтезированы порошки сульфида серебра с субмикро- и микрометровым размером частиц. Кристаллическая структура синтезированных порошков, морфология, состав и размер частиц сульфида серебра проанализированы методами рентгеновской дифракции, сканирующей электронной микроскопии, энергодисперсионного рентгеновского анализа и газовой адсорбции. Частицы порошков имеют сходную морфологию в виде прямоугольных параллелепипедов и кубов со сглаженными ребрами, размер частиц порошков зависит от условий синтеза и составляет от ~500 до 2000 нм.

Об авторах

С. И. Садовников

Институт химии твердого тела УрО РАН

Автор, ответственный за переписку.
Email: sadovnikov@ihim.uran.ru
Россия, 620990, Екатеринбург, ул. Первомайская, 91

Список литературы

  1. Sadovnikov S.I., Gusev A.I. // J. Mater. Chem. A. 2017. V. 5. № 34. P.17676. https://doi.org/10.1039/C7TA04949H
  2. Wang X., Yang S., Ma S. et al. // Catal. Sci. Technol. 2016. V. 6. № 1. P. 242. https://doi.org/10.1039/C5CY00787A
  3. Gao L., Li Z., Liu J. // RSC Adv. 2017. V. 7. № 44. P. 27515. https://doi.org/10.1039/C7RA03955G
  4. Yang Y., Ashraf M.A., Fakhri A. et al. // Spectrochim. Acta A. 2021. V. 249. P. 119324. 7 pp. https://doi.org/10.1016/j.saa.2020.119324
  5. Yang C., Li T., Guo Y. et al. // Spectrochim. Acta A. 2022. V. 273. P. 121048. https://doi.org/10.1016/j.saa.2022.121048
  6. Ren Z., Shen C., Yuan K. et al. // Mater. Today Commun. 2022. V. 31. P. 103719. https://doi.org/10.1016/j.mtcomm.2022.103719
  7. Igbal M.W., Faisal M.M., Hassan ul H. et al. // J. Energy Stor. 2022. V. 52. Part A. P. 104847. 8 pp. https://doi.org/10.1016/j.est.2022.104847
  8. Hassan H.U., Igbal M.W., Afzal A.M. et al. // Intern. J. Energy Res. 2022. V. 46. № 8. P. 11346. https://doi.org/10.1002/er.7932
  9. Li C.V., Ding S.-N. // Anal. Methods. 2015. V. 7. № 10. P. 4348. https://doi.org/10.1039/C5AY00685F
  10. Lim W.P., Zhang Z., Low H.Y. et al. // Angew. Chem. Int. Ed. 2004. V. 43. № 42. P. 5685. https://doi.org/10.1002/anie.200460566
  11. Wang X.B., Liu W.M., Hao J.C. et al. // Chem. Lett. 2005. V. 34. № 12. P. 1664. https://doi.org/10.1246/cl.2005.1664
  12. Dong L.H., Chu Y., Liu Y. // J. Colloid Interface Sci. 2008. V. 317. № 2. P. 485. https://doi.org/10.1016/j.jcis.2007.09.055
  13. Chen M.H., Gao L. // Mater. Lett. 2006. V.60. № 8. P. 1059. https://doi.org/10.1016/j.matlet.2005.10.077
  14. Zhang C.L., Zhang S.M., Yu L.G. et al. // Mater. Lett. 2012. V. 85. P. 77. https://doi.org/10.1016/j.matlet.2012.06.112
  15. Lv L.Y., Wang H. // Mater. Lett. 2014. V. 121. P. 105. https://doi.org/10.1016/j.matlet.2014.01.121
  16. Sadovnikov S.I., Gusev A.I., Rempel A.A. // Superlat. Microstr. 2015. V. 83. P. 35. https://doi.org/10.1016/j.spmi.2015.03.024
  17. Sadovnikov S.I., Gusev A.I., Chukin A.V. et al. // Phys. Chem. 2016. V. 18. № 6. P. 4617. https://doi.org/10.1039/c5cp07224g
  18. Kaowphong S. // J. Solid State Chem. 2012. V. 189. P. 108. https://doi.org/10.1016/j.jssc.2011.12.010
  19. Sadovnikov S.I. // Russ. J. Inorg. Chem. 2019. V. 64. № 10. P. 1309. https://doi.org/10.1134/S0036023619100115
  20. Khaleelullah M.M.S.I., Dheivasigamani T., Natarajan P. et al. // J. Cryst. Growth. 2017. V. 468. P. 119. https://doi.org/10.1016/j.jcrysgro.2016.10.081
  21. Chen Y., Liang Y., Li T. et al. // J. Colloid Interface Sci. 2019. V. 555. https://doi.org/10.1016/j.jcis.2019.08.026
  22. Munaro J., Dolceta P., Nappini S. et al. // Appl. Surf. Sci. 2020. V. 514. P. 145856. 9 pp. https://doi.org/10.1016/j.apsusc.2020.145856
  23. Sadovnikov S.I., Kozlova E.A., Gerasimov E.Yu. et al. // Int. J. Hydrogen. Energy. 2017. V. 42. № 40. P. 25258. https://doi.org/10.1016/j.ijhydene.2017.08.145
  24. Match! Version 1.10. Phase Identification from Powder Diffraction © 2003-2010 Crystal Impact.
  25. X’Pert HighScore Plus. Version 2.2e (2.2.5). PANalytical B. V. Almedo, the Netherlands.
  26. Brunauer S., Emmett P.H., Teller E. // J. Am. Chem. Soc. 1938. V. 60. № 2. P. 309. https://doi.org/10.1021/ja01269a023
  27. Sadovnikov S.I., Gusev A.I., Gerasimov E.Yu. et al. // Chem. Phys. Lett. 2015. V. 642. P. 17. http//doi.org/https://doi.org/10.1016/j.cplett.2015.11.004
  28. Greg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. London: Acad. Press, 1982. 304 p.
  29. http://webbook.nist.gov/chemistry/
  30. Perrott C.M., Fletcher N.H. // J. Chem. Phys. 1969. V. 50. № 6. P. 2344. https://doi.org/10.1063/1.1671386
  31. Thompson W.T., Flengas S.N. // Can. J. Chem. 1971. V. 49. № 9. P. 1550. https://doi.org/10.1139/v71-252
  32. Okazaki H., Takano A. // Z. Naturforsch. A. 1985. V. 40. № 10. P. 986. https://doi.org/10.1515/zna-1985-1004
  33. Grønvold F., Westrum E.F. // J. Chem. Thermodin. 1986. V. 18. № 4. P. 381. https://doi.org/10.1016/0021-9614(86)90084-4

Дополнительные файлы


© С.И. Садовников, 2023