Воздушная газификация древесины при повышенном давлении в режиме фильтрационного горения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Экспериментально исследована воздушная газификация древесины при повышенном давлении в режиме фильтрационного горения. Показано, что повышение давления в реакторе (до 3 атм) при газификации древесины приводит к увеличению производительности экспериментальной установки в 1.6 раза, снижению количества образующих смол в 1.5 раза и изменению концентраций выходящих газов. Проведены термодинамические расчеты влияния давления на стадию пиролиза древесины. С повышением давления от 1 до 9 атм происходит снижение объемных концентраций водорода и монооксида углерода, а объемные концентрации водяного пара и диоксида углерода повышаются. Однако уже при температуре пиролиза 1300 К повышение давления практически не оказывает влияния на состав газообразных продуктов.

Об авторах

В. М. Кислов

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: vmkislov@icp.ac.ru
Россия, Черноголовка

М. В. Цветков

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: vmkislov@icp.ac.ru
Россия, Черноголовка

А. Ю. Зайченко

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: vmkislov@icp.ac.ru
Россия, Черноголовка

Д. Н. Подлесный

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: vmkislov@icp.ac.ru
Россия, Черноголовка

М. В. Салганская

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: vmkislov@icp.ac.ru
Россия, Черноголовка

Ю. Ю. Цветкова

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Email: vmkislov@icp.ac.ru
Россия, Черноголовка

Е. А. Салганский

Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук

Автор, ответственный за переписку.
Email: vmkislov@icp.ac.ru
Россия, Черноголовка

Список литературы

  1. Arena U. // Waste Manag. 2012. V. 32. № 4. P. 625; https://doi.org/10.1016/j.wasman.2011.09.025
  2. Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sust. Energ. Rev. 2023. V. 177. ID 113 213; https://doi.org/10.1016/j.rser.2023.113213
  3. Герасимов Г.Я., Хасхачих В.В., Сычев Г.А. и др. // Хим. физика. 2022. Т. 41. № 11. С. 24; https://doi.org/10.31857/S0207401X22110048
  4. Смирнов В.Н., Шубин Г.А., Арутюнов А.В. и др. // Хим. физика. 2022. Т. 41. № 11. С. 52; https://doi.org/10.31857/S0207401X22110115
  5. Van Dyk J.C., Keyser M.J., Coertzen M. // Intern. J. Coal Geol. 2006. V. 65. № 3–4. P. 243; https://doi.org/10.1016/j.coal.2005.05.007
  6. Seed M.A., Williams A.R., Brown D.J., Hirschfelder H. // Proc. Third Intern. Conf. on Clean Coal Technologies for our Future. Cagliari, Italy, 2007.
  7. Motta I.L., Miranda N.T., Filho R.M., Maciel M.R.W. // Renew. Sust. Energ. Rev. 2018. V. 94. P. 998; https://doi.org/10.1016/j.rser.2018.06.042
  8. Кислов В.М., Жолудев А.Ф., Кислов М.Б., Салганский Е.А. // ЖПХ. 2019. Т. 92. № 1. С. 61; https://doi.org/10.1134/S0044461819010080
  9. Asadullah M. // Renew. Sust. Energ. Rev. 2014. V. 40. P. 118; https://doi.org/10.1016/j.rser.2014.07.132
  10. Cortazar M., Santamaria L., Lopez G. et al. // Energy Convers. Manag. 2023. V. 276. ID 116496; https://doi.org/10.1016/j.enconman.2022.116496
  11. Mayerhofer M., Mitsakis P., Meng X. et al. // Fuel. 2012. V. 99. P. 204; https://doi.org/10.1016/j.fuel.2012.04.022
  12. Wolfesberger U., Aigner I., Hofbauer H. // Environ. Prog. Sustain. Energy 2009. V. 28. № 3. P. 372; https://doi.org/10.1002/ep.10387
  13. Knight R.A. // Biomass Bioenerg. 2000. V. 18. № 1. P. 67; https://doi.org/10.1016/S0961-9534(99)00070-7
  14. Valin S., Ravel S., Guillaudeau J., Thiery S. // Fuel Process. Technol. 2010. V. 91. № 10. P. 1222; https://doi.org/10.1016/j.fuproc.2010.04.001
  15. Медведев С.П., Иванцов А.Н., Андержанов Э.К. и др. // Хим. физика. 2022. Т. 41. № 12. С. 56;
  16. Tereza A.M., Medvedev S.P., Smirnov V.N. // Acta Astronaut. 2021. V. 181. P. 612; https://doi.org/10.1016/j.actaastro.2020.09.048
  17. Медведев С.П., Максимова О.Г., Черепанова Т.Т. и др. // Хим. физика. 2022. Т. 41. № 11. С. 73; https://doi.org/10.31857/S0207401X22110085
  18. Situmorang Y.A., Zhao Z., Yoshida A., Abudula A., Guan G. // Renew. Sust. Energ. Rev. 2020. V. 117. ID 109 486; https://doi.org/10.1016/j.rser.2019.109486
  19. Janajreh I., Adeyemi I., Raza S.S., Ghenai C. // Ibid. 2021. V. 138. ID 110505; https://doi.org/10.1016/j.rser.2020.110505
  20. Ruiz G., Ripoll N., Fedorova N. et al. // Intern. J. Heat Mass. Transf. 2019. V. 136. P. 383; https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.009
  21. Салганский Е.А., Фурсов В.П., Глазов С.В., Салганская М.В., Манелис Г.Б. // Физика горения и взрыва. 2003. Т. 39. № 1. С. 44.
  22. Манелис Г.Б., Глазов С.В., Лемперт Д.Б., Салганский Е.А. // Изв. АН. Сер. хим. 2011. № 7. С. 1278.
  23. Глазов С.В., Полианчик Е.В. // Теорет. основы хим. технологии. 2019. Т. 53. № 2. С. 152; https://doi.org/10.1134/S0040357119020040
  24. Tabrizi F.F., Mousavi S.A.H.S., Atashi H. // Energy Convers. Manag. 2015. V. 103. P. 1065; https://doi.org/10.1016/j.enconman.2015.07.005
  25. Цветков М.В., Кислов В.М., Цветкова Ю.Ю. и др. // Хим. физика. 2022. Т. 41. № 8. С. 93; https://doi.org/10.31857/S0207401X22080143
  26. Трусов Б.Г. // Матер. XIV Междунар. конф. по химической термодинамике. Спб: НИИХ СПбГУ, 2002. С. 483.
  27. Salgansky E.A., Kislov V.M., Glazov S.V., Salganskaya M.V. // J. Combustion. 2016. ID 9637082; https://doi.org/10.1155/2016/9637082
  28. Kitzler H., Pfeifer C., Hofbauer H. // Fuel Process. Technol. 2011. V. 92. № 5. P. 908; https://doi.org/10.1016/j.fuproc.2010.12.009
  29. Hoang A.T., Huang Z., Nižetić S. et al. // Intern. J. Hydrog. Energy. 2022. V. 47. № 7. P. 4394; https://doi.org/10.1016/j.ijhydene.2021.11.091
  30. Habibollahzade A., Ahmadi P., Rosen M.A. // J. Clean. Prod. 2021. V. 284. ID 124718; https://doi.org/10.1016/j.jclepro.2020.124718

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (285KB)
3.

Скачать (818KB)
4.

Скачать (104KB)

© В.М. Кислов, М.В. Цветков, А.Ю. Зайченко, Д.Н. Подлесный, М.В. Салганская, Ю.Ю. Цветкова, Е.А. Салганский, 2023