Влияние состава полимерной матрицы на диапазон размеров наночастиц серебра, образующихся в растворе сукцинил-хитозана при действии микроволнового излучения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Разработан новый композит на основе сукцинил-хитозана и наночастиц серебра с включением дополнительного компонента – полиэтиленоксида. Для формирования наночастиц серебра методом восстановления из ионов металла использовали микроволновое излучение и в качестве восстановителя – D-глюкозу. О наличии наночастиц серебра в полученных коллоидных растворах судили по появлению полосы поглощения в спектрах электронного плазмонного резонанса (λmах = 420 нм). Показано, что введение дополнительного компонента в состав полимерной матрицы приводит к существенному сужению диапазона размеров образующихся наночастиц серебра.

Об авторах

В. А. Александрова

Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук

Email: alexandrova@ips.ac.ru
Россия, Москва

А. М. Футорянская

Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук

Автор, ответственный за переписку.
Email: alexandrova@ips.ac.ru
Россия, Москва

Список литературы

  1. Philippova O.T., Korchagina E.V. // Polym. Sci. A. 2012. V. 54. № 7. P. 552.
  2. Lan C., Niu G.C., Chang S.J., Yao C.H., Kuo S.M. // Biomed. Eng. Appl. Basis Commun. 2011. V. 23. № 1. P. 51.
  3. Grigorieva M.V. // Biotechnology. 2011. V. 4. № 2. P. 9.
  4. Шуршина А.С., Галина А.Р., Кулиш Е.И. // Хим. физика. 2022. Т. 41. № 4. С. 63; https://doi.org/10.31857/S0207401X22040082
  5. Помогайло А.Д., Джардималиева Г.И. Металлполимерные гибридные нанокомпозиты. М.: Наука, 2015.
  6. Захаров Н.С., Попова А.Н., Захаров Ю.А., Пугачёв В.М., Руссаков Д.М. // Хим. физика. 2022. Т. 41. № 7. С. 84; https://doi.org/10.31857/S0207401X22070172
  7. Александрова В.А., Футорянская А.М., Sadykova V.S. // Appl. Biochem. Microbiol. 2020. V. 56. № 5. P. 590; https://doi.org/10.1134/S0003683820050026
  8. Kiryukhin M.V., Sergeev B.M., Sergeyev V.G., Prusov A.N. // Polym. Sci. B. 2000. V. 42. № 5–6. P. 158.
  9. Коляда Л.Г., Ершова О.В., Ефимова Ю.Ю., Тарасюк Е.В. // Альм. совр. науки и образов. 2013. № 10. С. 79.
  10. Вишнякова Е.А., Сайкова С.В., Жарков С.М., Лихацкий М.Н., Михлин Ю.Л. // Журн. Сибирского федерального ун-та. Химия. 2009. Т. 2. № 1. С. 48.
  11. Александрова В.А., Футорянская А.М. // Хим. физика. 2021. Т. 40. № 12. С. 65; https://doi.org/10.31857/S0207401X21120025
  12. Базунова М.В., Мустакимов Р.А., Кулиш Е.И. // Хим. физика. 2021. Т. 40. № 9. С. 72; https://doi.org/10.31857/S0207401X21090028
  13. Васильев А.А., Карпачева Г.П., Дзидзигури Э.Л., Сидорова Е.Н. Компьютерное приложение “ДЕАМ” для определения размерных характеристик материалов и анализ данных: А.с. 2019660702. РФ // БИ. 2019. № 8.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (88KB)
3.

Скачать (567KB)

© В.А. Александрова, А.М. Футорянская, 2023