О некоторых свойствах решений систем линейных разностных уравнений с периодическими правыми частями

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматриваются однородная и неоднородная системы линейных разностных уравнений с коэффициентами, являющимися $N$-периодическими функциями дискретного времени. Для однородных систем получены достаточные условия существования периодических и почти периодических решений. Для неоднородных систем показано, что необходимым и достаточным условием существования $N$-периодического решения является наличие ограниченного решения. Установлены необходимые и достаточные условия ортогональности фундаментальной матрицы однородной системы. Приводятся иллюстрирующие примеры.

Об авторах

А. О Игнатьев

Институт прикладной математики и механики

Автор, ответственный за переписку.
Email: aoignat@mail.ru
Донецк

Список литературы

  1. Chen S., Liu X. Stability analysis of discrete-time coupled systems with delays // J. of the Franklin Institute. 2020. № 357. P. 9942-9959.
  2. Игнатьев А.О. Метод функций Ляпунова в системах разностных уравнений: устойчивость относительно части переменных // Дифференц. уравнения. 2022. Т. 58. № 3. С. 407-415.
  3. Elaydi S. An Introduction to Difference Equations. New York, 2005.
  4. Lakshmikantham V., Trigiante D. Theory of Difference Equations: Numerical Methods and Applications. New York, 2002.
  5. Agarwal R., Popenda J. Periodic solutions of first order linear difference equations // Math. Comput. Modelling. 1995. V. 22. № 1. P. 11-19.
  6. Савченко А.Я., Игнатьев А.О. Некоторые задачи устойчивости неавтономных динамических систем. Киев, 1989.
  7. Giang D.V. Linear difference equations and periodic sequences over finite fields // Acta Math. Vietnam. 2016. V. 41. № 1. P. 171-181.
  8. Hasil P., Vesely M. Limit periodic homogeneous linear difference systems // Appl. Math. Comput. 2015. V. 265. P. 958-972.
  9. Janglajew K., Schmeidel E. Periodicity of solutions of nonhomogeneous linear difference equations // Adv. Difference Equat. 2012. V. 195.
  10. Agarwal R. Difference Equations and Inequalities. Theory, Methods, and Applications. V. 228. New York, 2000.
  11. Agarwal R., Wong P. Advanced Topics in Difference Equations. Dordrecht, 1997.
  12. Gasull A. Difference equations everywhere: some motivating examples // Difference Equations, Discrete Dynamical Systems and Applications / Eds. S. Elaydi et al. 2019. V. 287. P. 129-167.
  13. Elaydi S., Sacker R. Periodic difference equations, population biology and the Cushing-Henson conjectures // Math. Biosci. 2006. V. 201. № 1-2. P. 195-207.
  14. Elaydi S., Sacker R. Global stability of periodic orbits of non-autonomous difference equations and population biology // J. Differ. Equat. 2005. V. 208. № 1. P. 258-273.
  15. Ignatyev A.O., Ignatyev O.A. On the stability of discrete systems // Integral Methods in Science and Engineering. Boston, 2006. P. 105-116.
  16. Ignatyev A.O., Ignatyev O.A. On the stability in periodic and almost periodic difference systems // J. Math. Anal. Appl. 2006. V. 313. № 2. P. 678-688.
  17. Zhang S., Liu P., Gopalsamy K. Almost periodic solutions of nonautonomous linear difference equations // Appl. Analysis: an Int. J. 2002. V. 81. № 2. P. 281-301.
  18. Деменчук А.К. О сильно нерегулярных периодических решениях линейного дискретного уравнения первого порядка // Весцi НАН Беларусi. Сер. фiз.-мат. навук. 2020. Т. 56. № 1. С. 30-35.
  19. Popenda J., Schmeidel E. Asymptotically periodic solution of some linear difference equations // Facta Univ. Ser. Math. Inform. 1999. V. 14. P. 31-40.
  20. Clark M.E., Gross L.J. Periodic solutions to nonautonomous difference equations // Math. Biosci. 1990. V. 102. № 1. P. 105-119.
  21. Vesely M. Construction of almost periodic sequences with given properties // Electron. J. Differ. Equat. 2008. V. 126.
  22. Vesely M. Almost periodic homogeneous linear difference systems without almost periodic solutions // J. Difference Equat. Appl. 2012. V. 18. № 10. P. 1623-1647.
  23. Massera J.L. The existence of periodic solutions of systems of differential equations // Duke Math. J. 1950. V. 17. № 4. P. 457-475.
  24. Makay G. On some possible extensions of Massera's theorem // Electronic J. of Qualit. Theory of Differ. Equat. 2000. V. 16. P. 1-8.
  25. Zubelevich O. A note on theorem of Massera // Regul. Chaotic Dyn. 2006. V. 11. № 4. P. 475-481.
  26. Li Y., Lin Z., Li Z. A Massera type criterion for linear functional differential equations with advanced and delay // J. Math. Anal. Appl. 1996. V. 200. P. 717-725.
  27. Corduneanu C. Almost Periodic Functions. New York, 1989.
  28. Левитан Б.М. Почти периодические функции. М., 1953.
  29. Мишина А.П., Проскуряков И.В. Справочная математическая библиотека. Высшая алгебра. М., 1965.
  30. Vleck F.S.V. A note on the relation between periodic and orthogonal fundamental solutions of linear systems // Amer. Math. Monthly. V. 71. № 4. P. 406-408.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023