Электронное строение Cd-замещенных кремниевых клатратов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Представлены результаты теоретического исследования электронного строения ряда Cd-замещенных клатратов на основе кремния. Расчет проводился методом линеаризованных присоединенных плоских волн. В результате расчета была получена зонная структура, полные и парциальные плотности электронных состояний. Проведен анализ влияния количества замещающих атомом кадмия и их кристаллографической позиции в элементарной ячейке на электронно-энергетический спектр клатратов.

Полный текст

Доступ закрыт

Об авторах

Н. А. Борщ

Воронежский государственный технический университет

Автор, ответственный за переписку.
Email: n.a.borshch@ya.ru
Россия, 394006 Воронеж, ул. 20-летия Октября, 84

Н. С. Переславцева

Воронежский государственный технический университет

Email: n.a.borshch@ya.ru
Россия, 394006 Воронеж, ул. 20-летия Октября, 84

В. Р. Радина

Воронежский государственный университет

Email: n.a.borshch@ya.ru
Россия, 394018 Воронеж, Университетская пл., 1

С. И. Курганский

Воронежский государственный университет

Email: n.a.borshch@ya.ru
Россия, 394018 Воронеж, Университетская пл., 1

Список литературы

  1. Slack G.A. Design Concepts for Improved Thermoelectric Materials // MRS Proc. 1997. V. 478. P. 47–54. https://doi.org/10.1557/PROC-478–47
  2. Kasper J. S., Hagenmuller P., Pouchard M., Cros C. Clathrate Structure of Silicon Na8Si46 and NaxSi136 (x < 11) // Science. 1965. V. 150. P. 1713–1716. https://doi.org/10.1126/science.150.3704.1713
  3. Guloy A., Ramlau R., Tang Z., Schnelle M., Baitinger M., Grin Y. A Guest-Free Germanium Clathrate // Nature. 2006. V. 443. P. 320–323. https://doi.org/10.1038/nature05145
  4. Myles C. W., Dong J., Sankey O. F. Structural and Electronic Properties of Tin Clathrate Materials // Phys. Rev. B. 2001. V. 64. P. 165202–165212. https://doi.org/10.1103/PhysRevB.64.165202
  5. Shimizu F., Maniwa Y., Kume K., Kawaji K., Yamanaka S., Ishikawa M. NMR Study in the Superconducting Silicon Clathrate Compound NaxBaySi46 // Phys. Rev. B. 1996. V. 54. P. 13242–13246. https://doi.org/10.1103/physrevb.54.13242
  6. Tse J. S., Desgreniers S., Zhi-qiang L., Ferguson M. R., Kawazoe Y. Structural Stability and Phase Transitions in K8Si46 Clathrate under High Pressure // Phys. Rev. B. 2002. V. 89. P. 195507–195510. https://doi.org/10.1103/physrevlett.89.195507
  7. Fukuoka H., Kiyoto J., Yamanaka S. Superconductivity and Crystal Structure of the Solid Solutions of Ba8-δSi46-δGex (0 ≤ ≤ x ≤ 23) with Type I Clathrate Structure // J. Solid State Chem. 2003. V. 175. P. 237–244. http://dx.doi.org/10.1016/S0022–4596(03)00253–6
  8. Novikov V.V., Matovnikov A.V., Mitroshenkov N.V., Likhanov M.S., Morozov A.V., Shevelkov A.V. Temperature-Dependent Influence of Disorder on the Thermodynamic Properties of Sn20.53.5As20I8, a Vacancy-Driven Superstructure of the Type-I Clathrate // Philos. Mag. 2021. V. 101. № 19. P. 2092–2107. https://doi.org/10.1080/14786435.2021.1953177
  9. Kawasaki K., Kishimoto K., Asada H., Akai K. Synthesis and Some Properties of Ba24−x(Ga,Sn)136 (x~4) Type-II Clathrates // J. Solid State Chem. 2020. V. 290. P. 121540–121547. https://doi.org/10.1016/j.jssc.2020.121540
  10. Barkalov O.I., Kuzovnikov M.A., Sholin I.A., Orlov N.S. Transformations of Silicon Clathrate Si136 Under High Hydrogen Pressure up to 11 GPa // Solid State Commun. 2021. V. 340. P. 114492–114498. https://doi.org/10.1016/j.ssc.2021.114492
  11. Gunatilleke W. D. C. B., Wong-Ng W., Zavalij P.Y., Zhang M., Chen Y.-S., Nolas G.S. Revealing Uncommon Transport in the Previously Unascertained Very Low Cation Clathrate-I Eu2Ga11Sn35 // Cryst. Eng. Common. 2023. V. 25. P. 48–52. https://doi.org/10.1039/D2CE01026G
  12. Ghosh K., Ovchinnikov A., Baitinger M., Krnel M., Burkhardt U., Grin Y., Bobev S. Lithium Metal Atoms Fill Vacancies in the Germanium Network of a Type-I Clathrate: Synthesis and Structural Characterization of Ba8Li5Ge41 // Dalton Trans. 2023. V. 52. P. 10310–10322. https://doi.org/10.1039/D3DT01168B
  13. Christensen M., Johnsen S., Iversen B. B. Thermoelectric Clathrates of Type I // Dalton Trans. 2010. V. 39. P. 978–992. https://doi.org/10.1039/B916400F
  14. Wang L.-H., Chang L.-S. Thermoelectric Properties of p-Type Ba8Ga16Ge30 Type-I Clathrate Compounds Prepared by the Vertical Bridgman Method // J. Alloys Compd. 2017. V. 722. P. 644–650. https://doi.org/10.1016/j.jallcom.2017.06.110
  15. Koga, K., Suzuki, K., Fukamoto, M., Anno H., Tanaka T., Yamamoto S. Electronic Structure and Thermoelectric Properties of Si-Based Clathrate Compounds // J. Electron. Mater. 2009. V. 38. P. 1427–1432. https://doi.org/10.1007/s11664–009–0730–6
  16. Nasir N., Grytsiv A., Melnychenko-Koblyuk N., Rogl P., Bauer E., Lackner R., Royanian E., Giester G., Saccone A. Clathrates Ba8{Zn,Cd}x Si46−x, x∼7: Synthesis, Crystal Structure and Thermoelectric Properties // J. Phys.: Condens. Matter. 2009. V. 21. № 38. P. 385404–385411. http://dx.doi.org/10.1088/0953–8984/21/38/385404
  17. Koelling D.D., Arbman G.O. Use of Energy Derivative of the Radial Solution in an Augmented Plane Wave Method: Application to Copper // J. Phys. F. 1975. V. 5. P. 2041–2054. https://doi.org/10.1088/0305–4608/5/11/016
  18. Vosko S.N., Wilk L., Nusair M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: a Critical Analysis // Can. J. Phys. 1980. V. 58. P. 1200–1211. https://doi.org/10.1139/p80–159
  19. MacDonald A.H., Pickett W.E., Koelling D.D. A Linearised Relativistic Augmented-Plane-Wave Method Utilising Approximate Pure Spin Basis Functions // J. Phys. C. 1980. V. 13. P. 2675–2683. https://doi.org/10.1088/0022–3719/13/14/009
  20. Курганский С. И., Борщ Н. А., Переславцева Н. С., Электронная структура и спектральные характеристики клатратов Si46 и Na8Si46 // Физика и техника полупроводников. 2005. Т. 39. № 10. С. 1218–1223.
  21. Борщ Н. А., Переславцева Н. С., Курганский С. И. Электронная структура и спектральные характеристики Zn-замещенных клатратных силицидов // Физика и техника полупроводников. 2011. Т. 45. № 6. С. 729–739.
  22. Борщ Н. А., Переславцева Н. С., Курганский С. И. Электронно-энергетический спектр в Pd-замещенных клатратных кристаллах на основе кремния // Физика твердого тела. 2012. Т. 54. № 2. С. 241–245.
  23. Борщ Н. А., Курганский С. И. Электронная структура четырехкомпонентных клатратных кристаллов системы Ba-Zn-Si-Ge // Физика и техника полупроводников. 2018. Т. 52. № 3. С. 299–303. https://doi.org/10.21883/FTP.2018.03.45612.8615a

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зонная структура Сd-замещенных кремниевых клатратов в окрестности уровня Ферми.

Скачать (155KB)
3. Рис. 2. Полная и парциальные плотности электронных состояний в клатрате Ba8Cd6Si40.

4. Рис. 3. Полная и парциальные плотности электронных состояний в клатрате Ba8Cd7Si39.

Скачать (14KB)
5. Рис. 4. Полная и парциальные плотности электронных состояний в клатрате Ba8Cd8Si38.

Скачать (87KB)
6. Рис. 5. Координационные тетраэдры атомов клатратной решетки из неэквивалентных кристаллографических позиций и локальные парциальные плотности электронных состояний атомов кадмия из неэквивалентных кристаллографических позиций в клатратах Ba8Cd7Si39 и Ba8Cd8Si38.

Скачать (57KB)

© Российская академия наук, 2024