Nonlinear magnetization dynamics in Bose-Einstein condensation of magnons

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An equation for the dynamics of a Bose-Einstein condensate of magnons in a ferromagnetic film is presented, derived from quantum mechanical theory. The main interactions influencing the evolution of the condensed state are considered. An autonomous system of first-order differential equations describing the amplitude and phase of condensed magnons is obtained from the equation for their annihilation operator. The phase trajectories of such a system are investigated using the method of constructing phase portraits and determining the stability of stationary points.

Texto integral

Acesso é fechado

Sobre autores

A. Gasanov

Kotelnikov Institute of Radioengineering and Electronics of RAS; Moscow Institute of Physics and Technology (National Research University)

Autor responsável pela correspondência
Email: gasanov.ad@phystech.edu
Rússia, Mokhovaya Str. 11, build. 7, Moscow, 125009; Institutskiy lane, 9, Dolgoprudny, Moscow region, 141701

A. Matveev

Kotelnikov Institute of Radioengineering and Electronics of RAS; Moscow Institute of Physics and Technology (National Research University)

Email: gasanov.ad@phystech.edu
Rússia, Mokhovaya Str. 11, build. 7, Moscow, 125009; Institutskiy lane, 9, Dolgoprudny, Moscow region, 141701

A. Safin

Kotelnikov Institute of Radioengineering and Electronics of RAS; National Research University “Moscow Power Engineering Institute”

Email: gasanov.ad@phystech.edu
Rússia, Mokhovaya Str. 11, build. 7, Moscow, 125009; Krasnokazarmennaya Str., 14, Moscow, 111250

S. Nikitov

Kotelnikov Institute of Radioengineering and Electronics of RAS; Moscow Institute of Physics and Technology (National Research University); Saratov National Research State University named after N.G. Chernyshevsky

Email: gasanov.ad@phystech.edu
Rússia, Mokhovaya Str. 11, build. 7, Moscow, 125009; Institutskiy lane, 9, Dolgoprudny, Moscow region, 141701; Astrakhanskaya Str., 83, Saratov, 410004

Bibliografia

  1. Arute F., Arya K., Ryan Babbushet R. et al. // Nature. 2019. V. 574. № 7779. P. 505.
  2. Ladd T.D., Jelezko F., Laflamme R. et al. // Nature. 2010. V. 464. № 7285. P. 45.
  3. Demokritov S.O., Demidov V.E., Dzyapko O. et al. // Nature. 2006. V. 443. № 7110. P. 430.
  4. Rezende S.M. Fundamentals of Magnonics. Cham: Springer Nature, 2020.
  5. Stancil D.D., Prabhakar A. Spin Waves: Theory and Applications. N.Y.: Springer, 2009.
  6. Holstein T., Primakoff H. // Phys. Rev. 1940. V. 58. № 12. P. 1098. http://dx.doi.org/10. 1103/PhysRev.58.1098
  7. Bogoljubov N.N. // Il Nuovo Cimento. 1958. V. 7. № 6. P. 794. http://dx.doi.org/10.1007/BF02745585.
  8. Mohseni M., Qaiumzadeh A., Serga A.A. et al. // New J. Phys. 2020. V. 22. № 8. P. 083080.
  9. Balucani U., Barocchi F., Tognetti V., Brunner G. // Phys. Rev. B. 1972. V. 6. № 11. P. 4356.
  10. De Araujo C.B. // Phys. Rev. B. 1974. V. 10. № 9. P. 3961.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the sample under consideration in an external magnetic field. Magnons are pumped by antenna 1, located in the center of the sample, to which alternating current is supplied. The signal is picked up from two antennas 2 and 3 at the edges of the ferromagnetic film.

Baixar (81KB)
3. Fig. 2. Graph of the dependence of the square of the amplitude in the equilibrium position on the interaction coefficient. The inset shows an enlarged fragment. The solid curve is the stability region, the dashed curve is the instability region.

Baixar (243KB)
4. Fig. 3. Dependences of the real (a) and imaginary (b) parts of the first eigenvalue of the linearized matrix of the system on the interaction coefficient.

Baixar (93KB)
5. Fig. 4. Dependences of the real (a) and imaginary (b) parts of the second eigenvalue of the linearized matrix of the system on the interaction coefficient.

Baixar (95KB)
6. Fig. 5. Phase portrait of the system at ∼1011.

Baixar (324KB)
7. Fig. 6. Phase portrait of the system at ∼1022.

Baixar (277KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025