EXISTENCE OF A RENORMALIZED SOLUTION OF A QUASI-LINEAR ELLIPTIC EQUATION WITHOUT THE SIGN CONDITION ON THE LOWEST TERM

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper considers a second-order quasilinear elliptic equation with an integrable right-hand side. Restrictions on the structure of the equation are formulated in terms of the generalized

Sobre autores

L. Kozhevnikova

Sterlitamak branch of Ufa University of Science and Technology; Elabuga Institute of Kazan (Volga region) Federal University

Email: kosul@mail.ru
Sterlitamak, Russia; Elabuga, Russia

Bibliografia

  1. Gwiazda, P. Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space / P. Gwiazda, I. Skrzypczaka, A. Zatorska-Goldstein // J. Differ. Equat. — 2018. — V. 264. — P. 341–377.
  2. Ait Khellou, M. Renormalized solution for nonlinear elliptic problems with lower order terms and
  3. Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with
  4. Ying, Li. Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak– Orlicz spaces / Li Ying, Y. Fengping, Zh. Shulin // Nonlinear Analysis: Real World Applications. — 2021. — V. 61. — P. 1–20.
  5. Vil’danova, V.F. and Mukminov, F.Kh., Entropy solution for an equation with measure-valued potential in a hyperbolic space, Sb. Math., 2023, vol. 214, no. 11, pp. 1534–1559.
  6. Vil’danova, V.F. and Mukminov, F.Kh., Entropy solution for an equation with measure-valued potential in a hyperbolic space, Sb. Math., 2023, vol. 214, no. 11, pp. 1534–1559.
  7. Kozhevnikova, L.M., Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents, Sb. Math., 2019, vol. 210, no. 3, pp. 417–446.
  8. Kozhevnikova, L.M. On solutions of anisotropic elliptic equations with variable exponent and measure data / L.M. Kozhevnikova // Complex Variables and Elliptic Equations. — 2020. — V. 65, № 3. — P. 337–367.
  9. Kozhevnikova, L.M. On Solutions of Elliptic Equations with Variable Exponents and Measure Data in
  10. Kashnikova, A.P., Kozhevnikova, L.M., Existence of solutions of nonlinear elliptic equations with measure data in Musielak–Orlicz spaces, Sb. Math., 2022, vol. 213, no. 4, pp. 476–511.
  11. Nonlinear unilateral problems without sign condition in Musielak spaces / S.M. Douiri, A. Benkirane, M. Ait Khellou, Y. El Hadfi // Analysis and Mathematical Physics. — 2021. — V. 11, suppl. 66. — P. 1–26.
  12. Existence of renormalized solutions for a nonlinear elliptic equation in Musielak framework and
  13. Musielak, J. Orlicz Spaces and Modular Spaces / J. Musielak. — Berlin : Springer-Verlag, 1983. — 222 p.
  14. Benkirane, A. An existence result for nonlinear elliptic equations in Musielak–Orlicz–Sobolev spaces / A. Benkirane, M. Sidi El Vally // Bull. Belg. Math. Soc. Simon Stevin. — 2013. — V. 20, № 1. — P. 57–75.
  15. Gossez’s approximation theorems in Musielak–Orlicz–Sobolev spaces / Y. Ahmida, I. Chlebicka, P. Gwiazda, A. Youssfi // J. Funct. Anal. — 2018. — V. 275, suppl. 9. — P. 2538–2571.
  16. Kozhevnikova, L.M. On solutions of nonlinear elliptic equations with
  17. Dunford, N. and Schwartz, J.T., Linear Operators, V. I: General Theory, New York, London: Interscience Publishers, 1958.
  18. Chlebicka, I. Measure data elliptic problems with generalized Orlicz growth / I. Chlebicka // Proc. of the Royal Society of Edinburgh. Sect. A. — 2023. — V. 153, № 2. — P. 588–618.
  19. Benkirane, A. Variational inequalities in Musielak–Orlicz–Sobolev spaces / A. Benkirane, M. Sidi El Vally // Bull. Belg. Math. Soc. Simon Stevin. — 2014. — V. 21, № 5. — P. 787–811.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024