On the Relationship Between the Pontryagin Maximum Principle and the Hamilton–Jacobi–Bellman Equation in Optimal Control Problems for Fractional-Order Systems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the optimal control problem of minimizing the terminal cost functional for a dynamical system whose motion is described by a differential equation with Caputo fractional derivative. The relationship between the necessary optimality condition in the form of Pontryagin’s maximum principle and the Hamilton–Jacobi–Bellman equation with so-called fractional coinvariant derivatives is studied. It is proved that the costate variable in the Pontryagin maximum principle coincides, up to sign, with the fractional coinvariant gradient of the optimal result functional calculated along the optimal motion.

作者简介

M. Gomoyunov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108, Russia; Ural Federal University, Yekaterinburg, 620002, Russia

编辑信件的主要联系方式.
Email: m.i.gomoyunov@gmail.com
Екатеринбург, Россия

参考

  1. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam, 2006.
  2. Diethelm K. The Analysis of Fractional Differential Equations: an Application-Oriented Exposition Using Differential Operators of Caputo Type. Berlin, 2010.
  3. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск, 1987.
  4. Bourdin L. Cauchy-Lipschitz theory for fractional multi-order dynamics: state-transition matrices, Duhamel formulas and duality theorems // Differ. Integr. Equat. 2018. V. 31. № 7/8. P. 559-594.
  5. Gomoyunov M.I. Solution to a zero-sum differential game with fractional dynamics via approximations // Dyn. Games Appl. 2020. V. 10. № 2. P. 417-443.
  6. Bergounioux M., Bourdin L. Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints // ESAIM Contr. Optim. Ca. 2020. V. 26. Art. 35.
  7. Bourdin L. Weighted H"older continuity of Riemann-Liouville fractional integrals - application to regularity of solutions to fractional Cauchy problems with Carath'eodory dynamics // Fract. Cal. Appl. Anal. 2019. V. 22. № 3. P. 722-749.
  8. Gomoyunov M.I. On differentiability of solutions of fractional differential equations with respect to initial data // Fract. Calc. Appl. Anal. 2022. V. 25. № 4. P. 1484-1506.
  9. Gomoyunov M.I. Dynamic programming principle and Hamilton-Jacobi-Bellman equations for fractional-order systems // SIAM J. Control Optim. 2020. V. 58. № 6. P. 3185-3211.
  10. Гомоюнов М.И., Лукоянов Н.Ю. Дифференциальные игры в системах дробного порядка: неравенства для производных функционала цены по направлениям // Тр. Мат. ин-та им. В.А. Стеклова. 2021. Т. 315. С. 74-94.
  11. Варга Дж. Оптимальное управление дифференциальными и функциональными уравнениями. М., 1977.
  12. Krasovskii N.N., Subbotin A.I. Game-Theoretical Control Problems. New York, 1988.
  13. Gomoyunov M.I. Sensitivity analysis of value functional of fractional optimal control problem with application to feedback construction of near optimal controls // Appl. Math. Optim. 2023. V. 88. № 2. Art. 41.
  14. Gomoyunov M.I. On representation formulas for solutions of linear differential equations with Caputo fractional derivatives // Fract. Calc. Appl. Anal. 2020. V. 23. № 4. P. 1141-1160.
  15. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М., 1961.
  16. Fleming W.H., Rischel R.W. Deterministic and Stochastic Optimal Control. New York, 1975.
  17. Субботина Н.Н. Метод характеристик для уравнений Гамильтона-Якоби и его приложения в динамической оптимизации // Совр. математика и её приложения. 2004. Т. 20. С. 1-129.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023