A simple physical model of nonlinear dependence of helium stopping power on the velocity of low-energy hydrogen ions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, the dependence of the probability of ionization of helium atoms on the velocity of a low-energy hydrogen ion beam is taken into account when the first ionization potential of target atoms exceeds the ionization potential of the charged particle beam atoms. Formulae describing the dependences of the helium stopping power on the beam energy of monoenergetic protons and deuterons are obtained. It is shown that their application makes it possible to calculate the helium stopping power adequately to the available experimental results.

Full Text

Restricted Access

About the authors

N. N. Mikheev

Shubnikov Institute of Crystallography, Kurchatov Complex of Crystallography and Photonics, National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: kmikran@spark-mail.ru
Russian Federation, Kaluga

References

  1. Golser R., Semrad D. // Phys. Rev. Lett. 1991. V. 66. P. 1831. https://doi.org/10.1103/physrevlett.66.1831
  2. Raiola F., Gyiirky G., Aliotta M. et al. // Eur. Phys. J. A. 2001. V. 10. P. 487. https://doi.org/10.1007/s100500170107
  3. Фирсов О.Б. // ЖЭТФ. 1959. Т. 36. Вып. 11. С. 1517. http://jetp.ras.ru/cgi-bin/dn/e_009_05_1076.pdf
  4. Lindhard J., Winther A. // Kgl. danske vid. selskab. Mat.-fys. Medd. 1964. B. 34. № 4. S. 23.
  5. ICRU Report 49. Stopping Powers and Ranges for Protons and Alpha Particles. International Commission on Radiation Units and Measurements. 1993.
  6. Fermi E., Teller E. // Phys. Rev. 1947. V. 72. P. 399. https://doi.org/10.1103/physrev.72.399
  7. Stier P.M., Barnett C.F. // Phys. rev. 1956. v. 103. Iss. 4. p. 896. https://doi.org/10.1103/physrev.103.896
  8. Михеев Н.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 3. С. 94. https://doi.org/10.31857/s1028096022030141
  9. Михеев Н.Н., Безбах И.Ж. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 1. С. 20. https://doi.org/10.31857/s1028096023010168
  10. Михеев Н.Н., Безбах И.Ж. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2024. № 3. C. 72. https://doi.org/10.26201/SURF.2024.3.72
  11. Физические величины: Справочник. М.: Энергоатомиздат, 1991. 1232 с.
  12. Энгель А. Ионизованные газы. М.: Гос. изд-во физ.-мат. лит-ры, 1959. 326 с.
  13. Френсис Г. Ионизационные явления в газах. М.: Атомиздат, 1964. 302 с.
  14. Golser R., Semrad D. // Nucl. Instrum. Methods Phys. Res. B. 1992. V. 69, P. 18. https://doi.org/10.1016/0168-583X(92)95732-7
  15. Boergesen P., Soerensen H. // Nucl. Instrum. Methods Phys. Res. 1982. V. 200. P. 571.
  16. Phillips J.A. // Phys. Rev. 1953. V. 90. P. 532. https://doi.org/10.1103/PhysRev.90.532
  17. Reiter G., Kniest N., Pfaff E., Clausnitzer G. // Nucl. Instrum. Methods Phys. Res. B. 1990. V. 44. P. 399. https://doi.org/10.1016/0168-583X(90)90001-B
  18. Boergesen P., Nicolet M.A. // Nucl. Instrum. Methods. 1977. V. 140. P. 541.
  19. Huberman M.N. // Phys. Rev. 1962. V. 127. P. 799. doi: 10.1103/PhysRev.127.799
  20. Bonderup E., Hvelplund P. // Phys. Rev. A. 1971. V. 4. P. 562. https://doi.org/10.1103/PhysRevA.4.562
  21. Paul H. IAEA. NDS. https://www-nds.iaca.org/stopping/

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Stopping power Se of molecular hydrogen for a beam of monoenergetic protons: solid curve − calculation according to formulas [9]; dots − Se measurements [14–20].

Download (82KB)
3. Fig. 2. Stopping power of Se of helium for a proton beam: solid curve − calculation using formulas (1) and (2); dashed curve − calculation using formulas [9]; crosses − data from [1]; circles − data from [21].

Download (81KB)
4. Fig. 3. Stopping power Se of helium for a deuteron beam: solid curve − calculation using formulas (1) and (2); crosses − data from [2]; circles − data from [21].

Download (86KB)

Copyright (c) 2025 Russian Academy of Sciences