On the Stability of a Switched Affine System for a Class of Switching Signals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the problem of stability of the zero equilibrium of a switched affine system closed by a linear static state feedback. The concept of feasible control for a given set of switching signals is introduced, and a constructive condition for checking this property for an arbitrary linear feedback is obtained. A sufficient condition for the stability of the zero equilibrium of a switched affine system closed by a feasible control is formulated.

Sobre autores

A. Fursov

Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310005, China; Lomonosov Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia

Email: fursov@cs.msu.ru
Ханчжоу, Китай;Москва, Россия

P. Krylov

Lomonosov Moscow State University, Moscow, 119991, Russia

Autor responsável pela correspondência
Email: pavel@leftsystem.ru
Москва, Россия

Bibliografia

  1. Rewienski M., White J. Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations // Linear Algebra and its Appl. 2006. V. 415. P. 426-454.
  2. Johansson M. Piecewise Linear Control System. Berlin; Heidelberg, 2003.
  3. Rodrigues L., How J. Synthesis of piecewise-affine controllers for stabilization of nonlinear systems // Proc. of the IEEE Conf. on Decision and Control. 2004. V. 3. P. 2071-2076.
  4. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. М., 1985.
  5. Li C., Chen G., Liao X. Stability of piecewise affine systems with application to chaos stabilization // Chaos. 2007. V. 17. P. 023123.
  6. Liberzon D. Switching in Systems and Control. Boston, 2003.
  7. Черников С.Н. Линейные неравенства. М., 1968.
  8. Демидович Б.П. Лекции по математической теории устойчивости. М., 1967.
  9. Fraysseix H., Mendez P., Rosenstiehl P. Bipolar orientations revisited // Discrete Appl. Math. 1995. V. 56. P. 426-454.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023