On the Stability of a Switched Affine System for a Class of Switching Signals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the problem of stability of the zero equilibrium of a switched affine system closed by a linear static state feedback. The concept of feasible control for a given set of switching signals is introduced, and a constructive condition for checking this property for an arbitrary linear feedback is obtained. A sufficient condition for the stability of the zero equilibrium of a switched affine system closed by a feasible control is formulated.

About the authors

A. S Fursov

Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310005, China; Lomonosov Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia

Email: fursov@cs.msu.ru
Ханчжоу, Китай;Москва, Россия

P. A Krylov

Lomonosov Moscow State University, Moscow, 119991, Russia

Author for correspondence.
Email: pavel@leftsystem.ru
Москва, Россия

References

  1. Rewienski M., White J. Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations // Linear Algebra and its Appl. 2006. V. 415. P. 426-454.
  2. Johansson M. Piecewise Linear Control System. Berlin; Heidelberg, 2003.
  3. Rodrigues L., How J. Synthesis of piecewise-affine controllers for stabilization of nonlinear systems // Proc. of the IEEE Conf. on Decision and Control. 2004. V. 3. P. 2071-2076.
  4. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. М., 1985.
  5. Li C., Chen G., Liao X. Stability of piecewise affine systems with application to chaos stabilization // Chaos. 2007. V. 17. P. 023123.
  6. Liberzon D. Switching in Systems and Control. Boston, 2003.
  7. Черников С.Н. Линейные неравенства. М., 1968.
  8. Демидович Б.П. Лекции по математической теории устойчивости. М., 1967.
  9. Fraysseix H., Mendez P., Rosenstiehl P. Bipolar orientations revisited // Discrete Appl. Math. 1995. V. 56. P. 426-454.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences