On the Stability of a Switched Affine System for a Class of Switching Signals

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the problem of stability of the zero equilibrium of a switched affine system closed by a linear static state feedback. The concept of feasible control for a given set of switching signals is introduced, and a constructive condition for checking this property for an arbitrary linear feedback is obtained. A sufficient condition for the stability of the zero equilibrium of a switched affine system closed by a feasible control is formulated.

Авторлар туралы

A. Fursov

Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310005, China; Lomonosov Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia

Email: fursov@cs.msu.ru
Ханчжоу, Китай;Москва, Россия

P. Krylov

Lomonosov Moscow State University, Moscow, 119991, Russia

Хат алмасуға жауапты Автор.
Email: pavel@leftsystem.ru
Москва, Россия

Әдебиет тізімі

  1. Rewienski M., White J. Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations // Linear Algebra and its Appl. 2006. V. 415. P. 426-454.
  2. Johansson M. Piecewise Linear Control System. Berlin; Heidelberg, 2003.
  3. Rodrigues L., How J. Synthesis of piecewise-affine controllers for stabilization of nonlinear systems // Proc. of the IEEE Conf. on Decision and Control. 2004. V. 3. P. 2071-2076.
  4. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. М., 1985.
  5. Li C., Chen G., Liao X. Stability of piecewise affine systems with application to chaos stabilization // Chaos. 2007. V. 17. P. 023123.
  6. Liberzon D. Switching in Systems and Control. Boston, 2003.
  7. Черников С.Н. Линейные неравенства. М., 1968.
  8. Демидович Б.П. Лекции по математической теории устойчивости. М., 1967.
  9. Fraysseix H., Mendez P., Rosenstiehl P. Bipolar orientations revisited // Discrete Appl. Math. 1995. V. 56. P. 426-454.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2023